Perimeter and Area Unit Notes

Table of Contents:

Торіс	Page
Metric Conversions: Metric Staircase	2
Lines, Line Segments, and Rays	5
Polygon Names	5
Classifying Triangles	5
Properties of Shapes-definitions of	6
property, perimeter, and area	
Properties, perimeter and areaTriangle	6
Properties, perimeter and area	7
Parallelogram	
Properties, perimeter and areaRectangle	7
Properties, perimeter and areaRhombus	7
Properties, perimeter and areaSquare	8
Properties, perimeter and areaTrapezoid	8
Properties, perimeter and areaCircles	8

Metric Conversions: Metric Staircase

The <u>Metric System</u> is an internationally agreed upon decimal system of measurement introduced in France in <u>1799</u>.

Scientists need a <u>universal</u> way to communicate data (SI Units)

Almost all other countries but the United States are using the metric system.

Prefix	Meaning	Length	Mass	Capacity
kilo-	thousand	kilometer	<u>kilo</u> gram	<u>kilo</u> liter
	(1000)			
hecto-	hundred	<u>hecto</u> meter	<u>hectogram</u>	<u>hecto</u> liter
	(100)			
deka-	ten	<u>deka</u> meter	<u>deka</u> gram	<u>deka</u> liter
	(10)			
"base	ones	meter	gram	liter
unit"	(1)			
deci-	tenths	<u>deci</u> meter	<u>decig</u> ram	<u>deci</u> liter
	(0.1)			
centi-	hundreths	<u>centi</u> meter	<u>centig</u> ram	<u>centi</u> liter
	(0.01)			
milli-	thousandths	millimeter	milligram	milliliter
	(0.001)			

How to Convert between Units:

How many spaces?

The scale of the metric staircase is a base 10 so when converting units, count the number of steps you need to move, and then move the decimal that number of steps.

Which direction?

When you are moving up the staircase, you are dividing by factors of 10, so move the decimal to the left. When you are moving down the staircase, you are multiplying by factors of 10, so move the decimal to the right.

Use **DRUL** to remember: \underline{D} own- \underline{R} ight- \underline{U} p- \underline{L} eft

Squared Units:

If you are converting squared units for area, you need to remember that the steps are a base $100 (10^2)$, so for each step moved, you need to move the decimal 2 places.

Cubic Units: Not tested until grade 9

If you are converting cubic units (for volume), you need to remember that the steps are a base $1000 (10^3)$, so for each step moved, you need to move the decimal 3 places.

Lines, Line Segments, and Rays:

<u>A Line</u>: A line extends infinitely in both directions.

<u>A Line Segment:</u> A line segment is part of a line with a definite starting and stopping point.

<u>A Ray:</u> A ray extends infinitely in one direction. It is like half a line.

Polygon Names

<u>Polygon</u>: A polygon is an enclosed shape made up of straight lines.

<u>Regular polygon</u>: All sides and angles are equal <u>Irregular polygon</u>: Sides and angles are not equal

Sides	Name
3	Triangle **see below for classifications of triangles
4	Quadrilateral **see types in chart below.
5	Pentagon
6	Hexagon
7	Septagon/Heptagon
8	Octagon
9	Nonagon
10	Decagon
11	Hendecagon
12	Dodecagon

<u>Classifying Triangles</u>

<u>By Sides</u>: Equilateral, Isosceles, Scalene **<u>By Angle</u>**: Acute, obtuse, right

Properties of Shapes:

<u>Property</u>: An attribute, quality, or characteristic of the shape.

<u>Perimeter:</u> The distance around a polygon. Measured in units (mm, cm, dm, m, dam, hm, km)

<u>Area:</u> The size of the surface. The amount of space inside the boundary of a flat (2-D) object such as a triangle or circle. Measured in square units (mm², cm², dm², m²,dam²,hm²,km²).

QUADRILATERALS				
Parallelogram	-pairs of opposite sides are equal -opposite angles are equal -diagonals bisect each other	$P = \sum s$ Perimeter is the sum of all sides. P: Perimeter \sum : sum s: Sides	A = bh A: area b: base h: height *base and height are perpendicular	
Rectangle	-all properties of parallelograms -diagonals are equal -all angles are 90°	$P = \sum s$ Perimeter is the sum of all sides. P: Perimeter \sum : sum s: Sides	A = bh A: area b: base h: height *base and height are perpendicular	
Rhombus	-all properties of parallelograms -all sides are congruent -diagonals perpendicular (meet at 90°) and bisect opposite angles.	$P = \sum s$ Perimeter is the sum of all sides. P: Perimeter \sum : sum s: Sides	$A = bh$ OR $A = \frac{d1(d2)}{2}$ A: Area b: base h: height d: diagonals	

Square		$P = \sum s$ Perimeter is the sum of all	A = bh A: area
	-all properties of parallelograms -all properties of rectangles -all properties of the Rhombus **Therefore a square is a	sides. P: Perimeter ∑: sum s: Sides	b: base h: height *base and height are perpendicular
	specific type of rectangle and rhombus.	-	
Trapezoid	a Ih b	$P = \sum s$ Perimeter is the sum of all sides. P: Perimeter \sum : sum s: Sides	$A = \frac{h(b1+b2)}{2}$ OR $A = \frac{1}{2}h(b1+b2)$ A: Area b1: base 1 b2: base 2 h:height
C	IRCLES **Not tested	this year	-
Circle ** Circles are not polygons	Sector Origin Radius Diameter Arc	$C = \pi d \text{ OR}$ $C = 2\pi r$ C:circumference (perimeter of a circle) $\pi : \text{pi (3.14159}$ etc) d: diameter r: radius	$A = \pi r^{2}$ A: Area π : pi (3.14159 etc) r: radius