Seometry Unit Notes

Adjacent \quad Types Of Angles
-Share a vertex
-Next to each other
i.e. $\angle 1$ and $\angle 2, \angle 2$ and $\angle 4, \angle 4$ and $\angle 3, \angle 3$ and $\angle 1, \angle 5$ and $\angle 6, \angle 6$ and $\angle 8, \angle 8$ and
$\angle 7, \angle 7$ and $\angle 5$.
Vertically opposite
-the opposite angles formed when 2 lines intersect.
-vertically opposite angles are congruent
i.e. $\angle 1$ and $\angle 4, \angle 2$ and $\angle 3, \angle 5$ and $\angle 8, \angle 6$ and $\angle 7$.
Alternate exterior
-on opposite sides of the transversal and on the outside of the parallel lines
-Alternate exterior angles are equal
i.e. $\angle 1$ and $\angle 8$ and $\angle 2$ and $\angle 7$
Alternate interior
-on opposite sides of the transversal and on the inside of the parallel lines
-Alternate interior angles are equal
i.e. $\angle 3$ and $\angle 6$ and $\angle 4$ and $\angle 5$
Corresponding
-they are in the same position from one line to the other
-usually one of them is inside and one outdie the parallel lines
-corresponding angles are equal.
i.e. $\angle 1$ and $\angle 5, \angle 2$ and $\angle 6, \angle 3$ and $\angle 7, \angle 4$ and $\angle 8$.

Interior Angles of a Polygon

The sum of the angles in a triangle is equal to 180°,
The sum of the angles in other polygons is based on the number of triangles that can be drawn from 1 vertex. The number of triangles times 180° is the sum of the interior angles.
The rule is ($n-2$) $\times 180^{\circ}$ where
$n=$ the number of sides in the polygon.
**In a triangle $n=3$ so

$\begin{aligned} & n=3 \text { so } \\ & (n-2) \times 180^{\circ} \\ & =(3-2) \times 180^{\circ} \end{aligned}$	Sum of Interior Angles in a Polygon	
$=(1) \times 180^{\circ}$	Name of Polygon	Sum of Angles $(n-2) \times 180$
-	Triangle	180
	Quadrilateral	300.
	Pentagon	540
	Hexagon	${ }^{220}$
	Septagon	80.
	Octagon	1080
	Nonagon	1260.
	Decagon	140.

How to Copy an Angle using a Compass and Ruler
Create $\angle \mathrm{DEF} \dot{\cong}$ to $\angle \mathrm{ABC}$

1-Draw a ray and label one end point E

Steps
3-use your compass to measure the distance
between points A and C on the arc
that you drew.
4-Keep your compass set at the same
distance and place the compass tip at
point F . Make an arc. The intersection
point of the two arcs is point D .

