Integer Unit Notes

Table of Contents:

Topic	Page
Vocabulary	2
Operations on Integers-Addition	3
Operations on Integers-Multiplication	5
Operations on Integers-Division	5
Operations on Integers-Subtraction	6
Exponents with Integers	7
Order of Operations (BEDMAS) with Integers	$\mathbf{8}$

Vocabulary

Integer:

Positive or negative whole numbers including zero.

Negative Integers:

$-5,-4,-3,-2,-1$

Positive Integers:

$+1,+2,+3,+4,+5$

Opposite Value:

Two numbers that add up to zero. The opposite of -5 is +5 because $-5+5=0$

The absolute value is how far a number is from 0 (zero) on a number line, on either side of 0 (zero). The absolute value of a number is always positive. The absolute value of $2 \mid$ and of $|-2|$ are both 2 as they are both 2 units from 0 (zero).
The symbol for absolute value is

$|0|=0$

Operations on Integers:

Adding Integers:

Always try to make integer expressions into a little story. For Example:

- +3-6 could mean that you had $\$ 3$ and then you spent $\$ 6$. Now you owe $\$ 3$. ($+3-6=-3$)
- $+6+7$ could mean that you had $\$ 6$ and then you earned $\$ 7$ more. Now you have $\$ 13$. $(+6+7=+13)$
- $-2+4$ could mean that you owed $\$ 2$ and then you earned $\$ 4$. You paid off your dept and now have $\$ 2$ left. $(-2+4=+2)$
- -6-4 could mean that you borrowed $\$ 6$ and then you borrowed $\$ 4$ more. You now owe $\$ 10$. ($-6-4=-10)$

General Rules for Adding Integers:

If the signs are the Same:

\checkmark Keep the sign and add the two numbers together.

$$
-11-6=-17 \quad \text { OR } \quad+12+7=+19
$$

If the signs are different:

\checkmark Take the sign of the number with the largest absolute value and then find the difference (subtract) the numbers.

$$
-15+12=-3 \quad \text { OR } \quad+12-9=+3
$$

Visual Strategy for Adding Integers:

$$
\text { Question: }(-8)+(+2)
$$

Strategy \#1: Tug of War

Visualize a tug of war between 2 sides. On the negative side there are 8 and on the positive side there are 2. This means that the negative side wins by 6 so the answer is -6 .

Stategy \#2: Numbers in Boxes

1) place the numbers each in a box with the sign above it.
2) Ask yourself 2 questions: which box is greater and by how much.

The negative sign wins by 6 so -6 is the answer.

Multiplying and Dividing Integers:

\checkmark When Signs are different (1 positive, 1 negative), the product or quotient (answer) always ends up with a negative (-) sign.

Multiplying (X):

- You borrow $\$ 6$ from your mother on Monday, Tuesday and Wednesday. Now you owe her $\$ 18$. $(-6) X(+3)=-18$

Dividing (\div):

- You need to borrow $\$ 6$. You borrow even amounts from 2 different friends. How much will you owe each friend?
$(-6) \div(+2)=-3$
\checkmark When signs are the same (2 positives or 2 negatives), the product or quotient (answer) always ends up with a positive (+) sign.
$(+6) X(+4)=+24$
$(-5) \mathrm{X}(-6)=+30$
$(+10) \div(+2)=(+5)$
$(-12) \div(-3)=(+4)$

Visual Strategy for Determining the Sign when Multiplying and Dividing Integers:

$$
\text { Question: }(-6) \times(+2)
$$

Strategy \#1: Triangle Signs

1) Draw the triangle as shown
2) Cross out the two signs given (- and +). The remaining sign (-) is your answer.

and $6 \times 2=12$ so the answer is -12 .

Subtraction of Integers:

There are two ways to subtract integers:

Method 1: Change the sign and the operation. In other words: Add the opposite integer.
i.e. (-4) - (-4)
$=(-4)+(+4)$
$=0$
i.e. (-6) - (+7)
$=(-6)+(-7)$
$=-13$

Method 2: Use the integer rules for multiplication to remove the brackets, then add the numbers.
i.e. (-4) -(-4)
$=-4+4$
$=0$

$$
\text { i.e. } \begin{aligned}
& (-6)-(+7) \\
= & -6-7 \\
= & -13
\end{aligned}
$$

Exponents with Integers

$(-2)^{3}=-2 \times-2 x-2=-8$
$(-2)^{4}=-2 x-2 x-2 x-2=+16$
*If the base is negative and in brackets, then the answer is positive if the exponent is even and the answer is negative if the exponent is odd.
$-2^{4}=-16 *$ this answer is negative because it is negative 2^{4}. You record the negative after because it is not in brackets.

